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Abstract

Video temporal sentence localization aims to localize a target moment in videos given language queries. We observe that
existing models suffer from a sheer performance drop when dealing with phrases contained in the sentence. It reveals the
limitation that existing models lack sufficient understanding of the semantic phrases in the query. To address this problem,
we fully exploit the temporal constraints between phrases within the same sentence and attempt to transfer knowledge from
externally pre-trained large models to help the model better accomplish phrase-level localization. Firstly, we propose a
phrase-level Temporal Relationship Mining (TRM) framework that employs the temporal relationship between the phrase
and the whole sentence to better understand each semantic entity (e.g. verb, subject) in the sentence. Specifically, we propose
the consistency and exclusiveness constraints between phrase and sentence predictions to improve phrase-level prediction
quality and use phrase-level predictions to refine sentence-level ones. Then, we extend the TRM framework with phrase-level
training (TRM-PT) using the large-scale pre-trained models to generate fine-grained pseudo-labels for the phrase. To mitigate
the negative impact of the label noise, we further propose to iteratively optimize the pseudo-labels. Finally, to enhance
the understanding of verb phrases, we utilize a language model to infer changes in the scene’s state before and after the
occurrence of verb phrases and align them with the visual content. Experiments on the ActivityNet Captions and Charades-
STA datasets show the effectiveness of our method on both phrase and sentence temporal localization and enable better model
interpretability and generalization when dealing with unseen compositions of seen concepts. The code is available at https://
github.com/minghangz/trm.

Keywords Video moment retrieval - Temporal video grounding - Cross-modal video retrieval - Large vision language model -
Video understanding
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Query: A man puts on gloves and then clean the snow

Query: Puts on

Query: Gloves

Query: Clean

Query: Snow
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(a) Sentence and phrase level prediction.
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(b) Performance on Charades-STA (IoU@QO0.3).

Fig. 1 (a) The sentence-level (in green) and phrase-level (in blue)
prediction. We make two assumptions about the relationship between
phrases and sentences: 1) Consistency: for each phrase, the phrase-
level prediction should overlap the sentence ground truth (in green); 2)
Exclusivity: for each video clip that does not intersect with the sentence
ground truth (in red), at least one phrase’s prediction does not overlap
it. (b) shows the evaluation results of the existing model (Wang et al.,
2022) and our method on the Charades-STA (R@1, IoU=0.3) when
using sentences or phrases as queries

to predefined classes, giving sentence localization greater
application potential. The model is expected to understand
the visual and language concepts and their compositions to
achieve robust performance.

In recent decades, fully supervised approaches have
demonstrated consistent advancement when handling com-
plete sentences as queries. However, real-world human-
generated queries vary a lot in terms of specificity. Conse-
quently, it is important for the model to effectively handle
various query types in order to be competent for real-world
applications, including both complete sentences (highlighted
in green in Fig.1(a)) and short phrases (indicated in blue
in Fig.1(a)). However, our empirical observations reveal
that even the most up-to-date open-source models, trained
using sentence annotations, struggle to deal with phrase-level
queries, as evident in Fig.1(b). To evaluate the performance
of the existing method (Wang et al., 2022), we conduct exper-
iments on the Charades-STA dataset and observe a significant
decline in prediction accuracy. Specifically, when confronted
with simpler verb and noun phrase queries, the [oU @0.3 met-
ric is dropped by 22.07% and 27.35%, respectively.
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Usually, a word or group of words forms a syntactic
constituent with a single grammatical function (ie. verb, sub-
ject, or object), representing a more straightforward semantic
meaning than sentences (no need to understand their com-
positions). The typical failure in much more straightforward
scenarios reveals the following problems. First, existing mod-
els tend to capture the annotation bias in the benchmark
but lack sufficient understanding of the intrinsic relationship
between simple visual and language concepts. Consequently,
existing models may easily fail when the unrealistic assump-
tion of the in-distribution test setting does not hold, i.e.,
incapable of generalizing to novel combinations of visual
entities and text, which is also revealed by Otani et al. (2020);
Yuan et al. (2021); Li et al. (2022). Second, the models’ inter-
pretability and robustness are questioned since they fail to
deal with simple (atomic) concepts, even though they achieve
decent results in sentence-level prediction tasks. This may
hinder the application of these methods in real scenarios.

Inspired by the insights mentioned earlier, we incor-
porate phrase-level prediction into the design of temporal
localization models. To help the model better accomplish
phrase-level localization and avoid the high annotation cost
and subjective annotation bias of fine-grained phrases, we
both fully exploit the temporal constraints between phrases
within the same sentence and attempt to transfer knowl-
edge from externally pre-trained large models. On the one
hand, the sentence-level annotation imposes constraints on
the internal phrase localization. Thus, we propose a phrase-
level Temporal Relationship Mining (TRM) framework to
improve the phrase temporal localization using sentence-
level supervision only. The three key ideas underpinning this
framework are as follows. Firstly, drawing inspiration from
the effective utilization of Multiple Instance Learning (MIL)
in weakly supervised temporal sentence localization, we train
the model to distinguish between matched and unmatched
video-phrase pairs, all without the need for phrase-level
annotations. Secondly, in order to consider the constraints
of sentence-level annotations on phrase-level predictions, we
exploit the temporal localization relationship relevant to the
phrase and the whole sentence and follow the two design
principles -consistency and exclusiveness. Specifically, con-
sistency requires every phrase-level prediction should share
a period with the annotated sentence-level ground truth. As
shown in Fig 1(a), all predictions of the phrases "puts
on", "gloves", "clean" and "snow" should overlap with the
sentence ground truth annotation (in green). Exclusiveness
requires that every period not intersect the sentence ground
truth (as shown in red boxes in Fig 1(a)) is at least excluded
from one phrase-level prediction (not intersect at least one
phrase prediction).

On the other hand, inspired by the robust generaliza-
tion capabilities exhibited by recent large-scale pre-trained
models, we further extend the TRM framework to TRM
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with Phrase-level Training (TRM-PT) which employs a pre-
trained model to generate fine-grained pseudo-labels for
phrases within sentence queries. We require the model to
learn both sentence-level and phrase-level localization and
propose a method of pseudo-label refinement and sample
re-weighting to mitigate the negative impact of the noise in
the phrase pseudo-labels on the model. Meanwhile, we find
that existing large-scale pre-trained vision-language models
(VLMs) have a poorer understanding of actions in videos
compared to their understanding of static states due to image-
based pre-training. For instance, we separately evaluate the
performance of pseudo labels for verb phrases and noun
phrases on the Charades-STA dataset obtained from a pre-
trained VLM (Rasheed et al., 2023). We observed a notably
lower accuracy in pseudo labels for verb phrases (R@0.5,
32.47% vs. 56.84%). We further noticed that actions in videos
often coincide with changes in scene states; for example,
‘sitting down’ leads to a transition of a person in the video
from standing to sitting. Understanding and localizing these
static scene states before and after such actions can help the
model better understand the action. Therefore, we propose to
leverage large-scale language models to predict the states of
scenes before and after the occurrence of action phrases and
align them with visual content before and after the action.
This allows the model to leverage the VLM’s strength in
understanding static descriptions, thereby improving its abil-
ity to localize the action that connects them.

Our contributions are summarized as follows: (1) We high-
light the importance of phrases in video temporal localization
and exploit the temporal relationship relevant to phrases and
the whole sentence. (2) We propose to generate pseudo-labels
for phrases using a large-scale pre-trained visual-language
model, and enhancing the model’s phrase-level prediction
performance by training on these automatically generated
labels. (3) We propose phrase-level Temporal Relationship
Mining (TRM) framework to investigate phrase-level predic-
tion using sentence-level supervision only, which proposes
the consistency and exclusiveness constraints to regularize
the training process. (4) We propose to utilize a large-scale
language model to infer changes in the scene’s state before
and after the occurrence of verb phrases and align them with
the visual content to enhance the model’s understanding of
verb phrases. (§) Experiments on Charades-STA and Activi-
tyNet Captions demonstrate our method’s ability to improve
phrase-level performance while performance in sentence-
level settings remains stable, achieving better generalization
performance.

Compared with our conference version (Zheng et al.,
2023), which first highlighted the challenge of phrase-level
generalization, this journal extension investigates how the
powerful capabilities of modern large pre-trained models
can be harnessed to further enhance phrase-level localiza-
tion performance. We introduce a new framework, TRM-PT,

with several key contributions not explored in the original
TRM: In terms of methodology, 1) we are the first to leverage
large-scale pre-trained vision-language models (VLMs) to
generate fine-grained pseudo-labels for phrases and improve
the performance of the model’s phrase-level prediction by
learning from these pseudo-labels. It is worth noting that
even without using pre-trained models, our approach has
achieved the best phrase-level predictive performance. Intro-
ducing large-scale pre-trained models can further enhance
phrase-level predictive performance (details are discussed in
Sec. 5.3). 2) We identified that VLMs often struggle with
understanding dynamic actions compared to static states. To
address this, we propose a novel approach using a large lan-
guage model (LLM) to infer the scene’s state before and after
a verb phrase occurs. By aligning these inferred states with
the corresponding visual content, we provide richer supervi-
sion to improve the model’s understanding of verbs. 3) We
propose a method of sample re-weighting and pseudo-label
optimization to reduce the negative impact of phrase-level
pseudo-labels on the model. Experimentally, 1) we verify
that our method can be applied to different proposal genera-
tion strategies, making it possible to extend to long videos.
2) We conduct new experiments to demonstrate that uti-
lizing pseudo-labels of phrases can not only improve the
phrase localization performance but also improve the robust-
ness of sentence-level prediction in cases of limited data and
high-noise labels. 3) We conduct a controlled experiment to
quantitatively analyze the impact of noisy pseudo-labels on
our model’s performance. 4) We carry out additional ablation
studies on hyperparameters and model architecture to further
demonstrate the effectiveness of our method. Additionally,
we perform empirical analysis to investigate the impact of
various visual features on the model’s performance.

2 Related Work
2.1 Temporal Sentence Localization

Since its inception in the work of TALL (Gao et al., 2017),
this task has garnered significant attention recently (Li et
al., 2023; Lin et al., 2023; Jang et al., 2023; Fang et al.,
2023). Previous approaches have generally fallen into two
categories: one group generates candidate proposals and sub-
sequently ranks them using multi-modal features (Zhang
et al.,, 2020), while the other leverages multi-modal fea-
tures directly to make timestamp predictions (Zhang et al.,
2020). More recent research has begun to delve into the
fine-grained aspects of vision and language. For instance,
with regard to vision information, DORi (Rodriguez-Opazo
etal., 2021) and MARN (Liu et al., 2022a) take into account
object features within the video, leading to enhancements in
model performance. Conversely, concerning language fea-
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tures, LGI (Mun et al., 2020) generates sub-query features
to implicitly consider fine-grained textual attributes, thus
elevating sentence localization performance. MMN (Wang
et al.,, 2022) trains models to discern between matched
and unmatched video-sentence pairs sourced from both
intra-video and inter-video contexts. Additionally, MGSL-
Net (Liu et al., 2022b) employs memory to bolster uncom-
mon samples during the training process. EMB (Huang et al.,
2022) introduces elastic boundaries to address uncertainties
in temporal boundaries. Meanwhile, VISA (Li et al., 2022)
examines the distribution of various entities and assesses
compositional generalization through the Charades-CG and
ActivityNet-CG dataset splits, where novel compositions of
seen phrases emerge in the test split. DeCo (Yang et al.,
2023) learns a coarse-to-fine compositional representation
for compositional temporal grounding. However, in Table 1
and Table 2, we evaluate the phrase-level performance of
recent open-source methods and observe that existing meth-
ods exhibit subpar performance when dealing with simpler
phrases as queries, indicating a lack of genuine compre-
hension regarding the inherent connection between vision
and language. In this paper, we present a unified framework
capable of handling both sentence and phrase queries con-
currently, leading to performance improvements.

2.2 Multiple Instance Learning

Multiple Instance Learning (MIL) has been widely applied
in computer vision, including tasks such as content-based
image retrieval (Song et al., 2013), object localization and
segmentation (Xu et al., 2015), computer-aided diagnosis
and detection (Xu et al., 2014), among others. While (Huang
et al., 2021; Yang et al., 2021; Huang et al., 2021; Zheng
et al., 2022a,b; Huang et al., 2023) have employed MIL to
tackle the challenge of weakly supervised temporal sentence
localization, where training data comprises only videos and
natural language queries, no prior research has explored its
use in addressing the problem of phrase-level video tempo-
ral localization. It’s worth noting that treating phrase-level
prediction directly as a weakly supervised task and introduc-
ing MIL overlooks the constraints imposed by sentence-level
annotations on phrase-level predictions. Hence, we delve
into the relationship between phrase-level predictions and
sentence-level annotations, introducing the concepts of con-
sistency and exclusivity as key assumptions in our approach.

2.3 Large-Scale Pre-trained Visual-Language Models

Large-scale pre-trained visual-language models (VLMs) (Rad-
ford et al., 2021; Li et al., 2022; Zeng et al., 2022; Sun et
al.,, 2019; Lei et al., 2021; Xu et al., 2021; Ma et al., 2022;
Rasheed et al., 2023; Weng et al., 2023) have demonstrated
strong generalization capability in various multi-modal tasks.

@ Springer

For example, CLIP (Radford et al., 2021) maps the visual and
text modalities to the same feature space by minimizing the
cosine distance between matched image-text pairs. BLIP (Li
et al., 2022) combines image-text contrastive learning with
other pre-training tasks such as image caption generation
and image-text matching, enabling the generative ability of
the model. X-CLIP (Ma et al., 2022), Video Fine-tuned
CLIP (Rasheed et al., 2023), and Open-VCLIP (Weng et
al., 2023) fine-tune the CLIP model on video-text pairs,
making the model more sensitive to video inputs.However,
these visual-language pre-trained models are often trained
on image-text data or trimmed video-text data, which makes
them insensitive to the transitional parts between events in
untrimmed videos.

Inspired by the powerful generalization ability of VLMs,
some methods attempt to use them for other tasks. For
instance, ReCLIP (Subramanian et al., 2022) and CPL (Liu
et al., 2023) respectively utilize VLMs in zero-shot and
weakly supervised visual grounding tasks to find the most
relevant visual regions for a given query. VDI (Luo et al.,
2023) propose visual-dynamic injection to empower the
image-text pre-training models’ ability to capture the video
changes. SPL (Zheng et al., 2023), in zero-shot video tem-
poral sentence localization tasks, uses VLMs to generate
pseudo-queries along with corresponding pseudo-events. In
contrast to them, we propose using pre-trained models to
generate pseudo-labels for phrases to assist fully supervised
video temporal sentence localization tasks.

Our phrase-level training is inspired by methods like
SPL (Zheng et al., 2023) but differs fundamentally in its prob-
lem setting and methodology. While SPL targets zero-shot
localization, we operate in a fully supervised setting to solve
a different problem: learning fine-grained phrase seman-
tics from coarse sentence-level annotations. Methodologi-
cally, we identify and solve key limitations of VLM-based
pseudo-labeling. We find this approach is inherently more
robust for simple phrases than for the complex sentences in
SPL; our analysis on Charades-STA shows VLM-generated
pseudo-label accuracy is significantly higher for phrases
(e.g., 56.84% for nouns) than for sentences (27.14%). Cru-
cially, this revealed that VLMs struggle with dynamic verb
phrases (32.47% accuracy) compared to static noun phrases
(56.84%). To address this critical weakness, we introduce a
core innovation absent in SPL: we leverage an LLM to infer
static scene states before and after an action, providing a
targeted supervisory signal to improve verb understanding.

2.4 Phrase in Temporal Sentence Localization

Phrase-level features offer models a richer set of fine-
grained textual representations and find extensive utility in
vision-language tasks like video grounding (Rohrbach et
al., 2016), and video captioning (Ryu et al., 2021; Zhang
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Fig. 2 Our proposed TRM model framework focuses on the temporal
relationship between a sentence and its phrases. Our model consists
of three modules: a video encoder extracts video features and gener-
ates a 2D temporal map; a query encoder extracts both sentence-level
and phrase-level features and a similarity learning module to mine the

et al., 2019). LGI (Mun et al., 2020) was the pioneering
work that harnessed sub-query features, albeit it fused them
early on to obtain fine-grained sentence features, without
directly pinpointing phrases or considering the connection
between phrase localization and sentence understanding.
Consequently, LGI’s results still exhibited a dramatic drop
(mloU drops by 16.34% on ActivityNet Captions) when han-
dling phrase queries, as indicated in Table2. Subsequently,
PLPNet(Li et al., 2022) made the notable stride of directly
addressing the challenge of phrase localization, elevating
phrase-level localization through the use of contrastive learn-
ing. However, it did not impose additional constraints on
phrase-level and sentence-level predictions, neglecting the
inherent relationship between the video segments corre-
sponding to a sentence and its constituent phrases. In this
paper, we present a unified framework capable of handling
both sentence and phrase queries concurrently, enhancing
the performance of both tasks. We introduce constraints that
operate from the perspective of prediction results, allowing
the TRM model to directly supervise predicted phrase-level
timestamps without the need for extra phrase-level annota-
tions. As far as our knowledge extends, we are the first to
explicitly explore the temporal relationship between phrase-
level and sentence-level predictions. This setting aligns more
closely with real-world application scenarios and empowers
the model to generalize to novel combinations of phrases.

temporal relationship of phrases and sentences based on our two con-
straints (consistency and exclusiveness) and leverage sentence-level
contrastive learning. We apply the phrase-level constraint loss consid-
ering the intrinsic relationship between sentences and phrases.

3 TRM: Temporal Relationship Mining
3.1 Overview

Figure 2 illustrates the overall architecture of our proposed
Temporal Relationship Mining (TRM) framework. We first
extract video representation and generate a 2D Temporal
Map (Zhang et al., 2020). Meanwhile, the query encoder
generates phrases and extracts text features for both phrases
and sentences. To represent the similarity between the text
and each video proposal, we generate score maps using
the 2D temporal map and the text feature for sentences
and all phrases. Due to the lack of phrase-level annotation,
we explored the consistency and exclusiveness relationship
between phrases and sentences as the loss function to regular-
ize the training process and improve the accuracy of phrase
score maps. Since the phrase-level score maps can provide
more fine-grained information for the sentence, we use them
to refine the sentence score map with a weighted sum option
as well, and the weight of each phrase represent its impor-
tance. Finally, we optimize the refined sentence score map
with an IoU regression loss and a contrastive learning loss.

@ Springer
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3.2 Model Architecture
3.2.1 Video Encoder

The video encoder aims at extracting video features and gen-
erating a 2D temporal map for similarity learning. We extract
features from the input video and encode them as a 2D tem-
poral adjacent feature map following MMN (Wang et al.,
2022). To process an input video, we initially divide it into
smaller video segments, each consisting of an equal number
of frames. Then we extract the clip-level visual feature with a
pre-trained CNN model. We can obtain N clip-level features
{fiv },N=1 € RV*4 where N is the number of clips and d is
the feature dimension. Then, we build up the 2D proposal
feature map F" e RV*N*4 following MMN (Wang et al.,
2022), where proposal FlVJ represents the video candidate
starting from the i-th clip and ending with the j-th clip.
Note that we follow previous works (Wang et al., 2022;
Zhang et al., 2020), constructing a dense 2D temporal map
with N x N proposals, to facilitate direct comparison with
prior works. This introduces a computational complexity of
O (N?) with respect to the number of video clips N. However,
our proposed TRM framework is agnostic to the proposal
generation strategy. The dense map used for our main exper-
iments can be replaced with more efficient sparse proposal
generation methods, such as those based on hierarchical seg-
ment trees (Mu et al., 2024; Pan et al., 2023) as shown in
Fig. 4, which can reduce the number of proposals and bring

@ Springer

the complexity closer to O (N ). This adaptation does not alter
the core principles of our methods. We provide a detailed
analysis in our ablation studies in Section 6.1, Table 6, and
Fig. 7.

3.2.2 Query Encoder

The query encoder aims to generate fine-grained phrases for a
sentence and extract both sentence and phrase-level text fea-
tures. More specifically, given a query sentence S, we first
parse N, phrases [p1, p2, ..., pr] using pre-trained SRL-
BERT(Shi & Lin, 2019). SRLBERT assigns semantic role
labels to each word in the sentence, while we only keep
the semantic roles with more than 1000 occurrences in the
training set as phrases. Then, we use a pre-trained Distil-
BERT (Sanh et al., 2019) model following MMN (Wang et
al., 2022) to extract the features of sentences and phrases at
the same time. Phrases provide fine-grained information to
the sentence, and the sentence provides global information to
phrases. Therefore, we further interact sentence and phrase
features through a single-layer transformer encoder (Vaswani
et al., 2017). The final sentence feature and phrase features
are represented as f5 € R? and ¥ € RNr*4 respectively.

3.2.3 Similarity Learning Module

To learn the semantic relevance of each sentence and phrase
with each temporal proposal, we generate score maps for
both sentence and phrases according to the similarity of text
and video features. In order to improve the quality of phrase
score maps, we propose two assumptions of consistency and
exclusivity to constrain the phrase score maps. Since phrases
provide finer-grained semantic information for sentences, we
use the phrase score maps to refine the sentence score map
so that it can summarize the attentional information for each
phrase. We use a weighted sum option over the phrase score
maps and leverage phrase weights to describe the importance
of different phrases. Finally, we optimize the refined sentence
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score map with an IoU regression loss and a contrastive learn-
ing loss.

Score Map Generation. For the sentence, we perform 1 x 1
convolution operation on visual feature map F and perform
a linear projection on text features £ respectively to project
the features of two modalities into the same dimension d”.

. H
The final representations of sentence features iiu e R?
. H
and visual features Fl‘gu € RVXNxd™ gare:
fifm = FCiou (fS) s F,'Z,,, = Conv;y (FV) (1)

where FC(-) is a fully connected network and Conv(-) is an
1 x 1 convolution. Then we regard the cosine similarity of
N 1% L o8 _ VT £S
fi, and F;/ as septence—level score map: $* = F,/ f> €
RM*Nin which S ; represents the similarity score between
the sentence and the proposal from the i-th video clip to the

Jj-th video clip.

Temporal Relation Mining. In previous works (Wang et
al., 2022; Zhang et al., 2020), the sentence score map is
directly used to predict the timestamps. However, it dismisses
the fine-grained phrases inside the query, and has poor per-
formance when the query is a single phrase. To solve this
problem, we build phrase score maps and mine the tempo-
ral relationship between the phrases and the sentence. Due
to the lack of phrase-level annotation data, we impose con-
straints between the phrase score maps for training purposes.
We have the following two hypotheses considering the rela-
tionship between phrases and sentences:

1. consistency: For paired sentences and videos, every
phrase-level prediction should share a period with the
annotated sentence-level ground truth. For unpaired sen-
tences and videos, at least one phrase-level prediction
does not share a period with the annotated ground truth.

2. exclusiveness: Each frame outside the ground truth is not
contained in at least one phrase-level prediction result.

In detail, we first obtain the text feature szz ou € ]RdH for
the i-th phrase through Eq (1). Then we regard the cosine sim-
ilarity as moments’ estimation score map S? of each phrase:
s/ = FylfE,, € RNV Inspired by Multiple Instance
Learning, we also randomly sample unmatched phrases in a
batch and compute their score map SP. Based on the degree
of intersection with the sentence ground truth, we divide all
proposals into two subsets. As shown in the left half of Fig. 3,
all the proposals in Area I have an IoU with the ground-truth
moment large than a certain threshold 6, while the opposite
is true for all proposals in Area II.

Our consistency loss ensures that each phrase-level predic-
tion should be located in Aera I, which is illustrated in Fig.3.

That is: for each phrase score map, the max score (marked

by black) in Area I should be 1. Our consistency loss also
requires that for a negative sentence, there should be at least

one phrase that mismatches any proposal in Area I, which
Nneg

is represented in Fig.3 as I_ni? n/l{ax S; — 0. The consistency
i= 1

loss can be described as follows:

N, »
Lcon =max (Lf ( max §;[s, 1], 1))
i=1 (s.1)€A,

Np A
+ min (Lf ( max Sf[s,t],O))
i=1 (s,1)€A]

where L is the focal loss (Lin et al., 2017) to balance the
positive and negative samples, A represents Area [, and A,
represents Area II.

Our exclusiveness loss requires that each proposal in Area
II should mismatch at least one phrase of the query sentence.
That is: as shown in Fig. 3, at least one of the phrase’s scores
should be O (i.e. the minimum score marked by green should
be 0) for all the proposals in Area II. The exclusiveness loss
can be described as follows:

NP
Y Ly (m_i{l(S,-” [s. 1]), 0) 3)

(s,1)eA;

@)

1
Loy = —
“T Ay

Sentence Score Map Refinement.. Since the phrase-level
score maps can provide more fine-grained information for
the sentence, we use them to refine the original sentence
score map S° € RV>*N We gain the final sentence score map
S € RV*N by aggregating the score maps of the sentence
and all of its phrases, which is shown as follows:

a = softmax(MLP([p1. p2. .... pn,])) “)
S=8+Y oS’ e RNV )

where o € RNris the phrase weights that describe the impor-
tance of different phrases pi, p2, ..., p Nps MLP denotes a
multilayer perception with a output layer of 1-dimension.

To supervise the sentence score map, we apply the binary
cross entropy loss to regress the IoU score of each proposal.
Following (Zhang et al., 2020), we adopt a scaled /oU value
y; as the supervision scale, but not a hard binary score. Then
the binary cross entropy loss can be expressed as

C
1
Liow =~ ;mlogsi + (1 — yplog(1 — 8p)), (6)

where C is the number of proposals.

Sentence-level Contrastive Learning. Following MMN
(Wang et al., 2022), we also use contrastive learning to
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Visual-Language Pseud.o Label:
Model 3.7s 12.1s walks in a doorway
[3.7s, 12.1s]
Time .
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walks in a doorway. doorway

First Epoch

N .
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Grounding Noise P el 0.7 Loss Reweight
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in a doorway

Query: A person
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Before state: The person
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Before state:

Grounding [0.3s, 2.75]
Model After state:
[9.6s, 15.9s]
Supervision T

(9.8s,17.8s)

(b)

Fig.5 The phrase-level training pipeline. (a) Due to the lack of phrase-
level annotation, we extract phrases from sentences and then utilize a
pre-trained visual-language model to calculate the similarity between
phrases and video segments. Then, we generate phrase pseudo-labels
based on visual-phrase similarity and use them to train the model. To
mitigate the negative impact of noise in the pseudo-labels, we propose a
noise estimator to reduce the weight of the loss function for high-noise

provide more supervised signals to the model. We collect pos-
itive and negative sentence-video pairs within and between
videos, and use noise contrastive estimation (Oord et al.,
2018) to estimate two conditional distributions p(s|v) and
p(v|s). The former represents the probability that a sentence
s matches the video v when giving v, and the latter represents
the probability that a video v matches the sentence s when
giving 5. We adopt the contrastive loss to help capture better
information between modalities as follows:

Leont = — Zlogp(vs|s) + ZIOgP(SvW)

seS veV

(N

where S, V are the sets of training sentences and video in a
batch, vy is the video that matches the sentence s, and s, is
the sentence that matches the video v.

The total loss of our model is as follows.

[/sent = £i0u + Econt + ‘CCU}’I + Eex (8)

@ Springer

samples and refine the pseudo-labels based on the model’s predictions.
(b) To improve the understanding of actions in videos, we propose to
leverage large-scale language models to predict the states of scenes
before and after the occurrence of action phrases. We use video clips
before and after the occurrence of ground-truth as time labels for the
state before and after the action phrase, and we use these state descrip-
tions from the large language model to train the model

Given the lack of phrase-level annotations, we can still opti-
mize the understanding of phrases during training with the
constraints between the whole sentence and phrases.

4 TRM-PT: Temporal Relationship Mining
with Phrase-Level Training

Using only the TRM in Sec. 3.2, our model has already
achieved the best phrase-level localization performance.
However, the consistency and exclusive constraints proposed
in Sec. 3.2 rely on sentence-level annotations to implicitly
supervise phrase-level predictions, leaving the phrase-level
prediction results still lacking explicit supervision. Recently,
the strong generalization abilities of large-scale pre-trained
models have inspired their use in generating supervision
for various tasks. Therefore, we introduce the Temporal
Relationship Mining with Phrase-level Training (TRM-PT)
framework, shown in Fig.5, which extends TRM in two sig-
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Sentence-Level Training

Annotation: [2s, 9.8s]

Video: (2 i
)
Grounding Prediction go ¢0nce
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Query‘: llpeISCr] iShared,
walks in a doorway ' '
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-
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[3.7s, 12.1s] H B
)
Before: The coffee icti
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[9.8s, 17.8s]

Phrase-Level Training

Fig. 6 Our proposed TRM-PT pipeline which utilizes sentence-level
annotations and pre-trained vision-language models to assist in phrase-
level predictions. We refer to the training process of the preliminary
version of TRM described in Sec. 3.2 as sentence-level training, which
use annotated videos and sentence queries to train the model. For phrase-
level training, due to a lack of phrase-level annotations, we extract
phrases from sentences and generate pseudo-labels from pre-trained
vision-language models to train the model. We also use a large-scale
language model to infer changes in the scene’s state before and after the
occurrence of verb phrases and align them with the visual content. This
helps the model understand what the states typically look like before
and after an action, thereby better assisting the model in locating verbs

nificant ways. First, we utilize large pre-trained models to
generate phrase-level pseudo-labels, providing the explicit
supervision that was previously missing. To address the noise
inherent in these generated labels, we propose a Noise Esti-
mator that re-weights training samples and iteratively refines
the pseudo-labels. Second, we find that existing pre-trained
vision-language models often have a poorer understanding of
dynamic actions compared to static states. We observe that
actions frequently coincide with changes in scene states (e.g.,
‘sitting down’ involves a transition from standing to sitting).
Understanding these states can help the model better localize
the action itself. We, therefore, leverage a large-scale lan-
guage model (LLM) to predict the states of scenes before and
after an action phrase occurs, and we align these state descrip-
tions with the corresponding visual content. This helps the
model learn what the scene typically looks like before and
after an action, providing a richer, more robust supervisory
signal.

4.1 Overview

As we can see in Fig. 5 (a), due to the lack of phrase-level
annotation, we first extract phrases from sentences and then

utilize a pre-trained visual-language model to calculate the
similarity between phrases and video segments. Then, we
generate phrase pseudo-labels based on visual-phrase simi-
larity and use them to train our TRM model. To mitigate the
negative impact of noise in the pseudo-labels, we propose a
noise estimator. On the one hand, it reduces the weight of the
loss function for high-noise samples, and on the other hand,
it refines the pseudo-labels based on the model’s predictions.
The refined pseudo-labels will be used for the training of
the next epoch. Through iterative refinement, the quality of
phrase-level pseudo-labels is improved and the model can
learn from those pseudo-labels.

In Fig. 5 (b), to improve the model’s understanding of
actions in the video, we train the model to understand and
localize the static scene states before and after the action
in the query. Specifically, we prompt LLM to predict the
states of scenes before and after the occurrence of action
phrases and use the state descriptions as the queries to train
the grounding model. We use the video segments with a
fixed duration before and after the annotation to supervise the
grounding results of the state descriptions before and after the
action phrase, respectively. In our original TRM model, the
IoU loss and contrastive loss only require the target segment
to be semantically close to the sentence query, while it does
not have explicit semantic constraints on the segments before
and after the target. In contrast, our TRM-PT model explic-
itly requires the semantics of the segments before and after
the target to correspond to the state descriptions before and
after the action occurs, thereby providing a stronger supervi-
sory signal. This helps the model understand what the states
before and after the action typically look like, thereby better
assisting the model in understanding of verb phrases.

We refer to the training process of the preliminary ver-
sion of TRM described in Sec. 3.2 as sentence-level training.
In Fig. 6, we show how phrase-level training collaborates
with our sentence-level training. On one hand, we use the
annotated videos and sentence queries to train the model
as described in Sec. 3.2 (i.e. the sentence-level training in
Fig. 6). On the other hand, for phrase-level training in Fig. 6),
due to a lack of phrase-level annotations, we first extract
phrases from sentences and generate pseudo-labels using a
pre-trained visual-language model. We also use LLM to gen-
erate state descriptions before and after the action phrases
as additional training data to improve the model’s under-
standing of action phrases. To obtain a unified model capable
of performing both phrase-level and sentence-level localiza-
tion simultaneously, we share the model weights between the
phrase-level and sentence-level training.

4.2 Pseudo Label Generation

In this step, we first generate phrase-level queries from
sentence-level queries using pre-trained SRLBERT(Shi &
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Lin, 2019) similar to the sentence-level training. Then, we
generate pseudo-labels for each phrase-level query. Inspired
by the powerful generalization ability of recent large-scale
pre-trained vision-language models, we propose to use the
pre-trained model to generate pseudo-labels for phrases.
Specifically, for each phrase, we utilize a pre-trained VLM to
extract text features F? € RV»*P_ where D represents the
feature dimension and N, is the number of extracted phrases.
Similarly, for the video, we the VLM to extract the video fea-
tures FV € RV*DP where N is the number of frames. Since
the VLM text and visual feature spaces are well aligned, we
can directly measure the relevance between the query and
the video frame by calculating the cosine similarity of their
respective features:

FPFYT

m=— L gNpN ©
IFPIIE]

Inspired by SPL (Zheng et al., 2023), we aim to gener-
ate high-quality pseudo-labels where the videos inside each
label are highly relevant to the query while those outside
are less relevant. To do this, we enumerate possible pseudo-
labels 1,2, ..., Iy, using the sliding window, where N is
the total number of pseudo-labels. For each pseudo-label /;,
we compute the average similarity between the query and
videos inside /;, as well as the average similarity between the
query and videos outside /;. The difference between these
two average similarities is then used as a quality score for
the pseudo-label /;:

1
Qik = ——

1

mij — ——— Siml-j (]0)
= N =l j%:
where Qjy. is the quality of the i-th phrase to the k-th pseudo-
label proposal, §;; is the relevance of the i-th phrase and
the the j-th frame, and ||/ | is the number of frames in the
pseudo-label proposal /. Finally, the pseudo-label with the
maximum quality score is selected to supervise the model
training:

yi = 1,;,12 = arg max Oik (1

This process allows us to generate pseudo-labels that max-
imize within-label similarity and minimize between-label
similarity to the query.

4.3 Noise Estimator

After obtaining phrase-level pseudo-labels, we can directly
use Eq.(8) to train the model. However, the pseudo-events
may not be accurate enough, and the noise of the pseudo-
labels may have a negative impact on the model. Inspired
by SPL (Zheng et al., 2023), we use a noise estimator

@ Springer

to estimate the pseudo-label noise and reduce the weight
of the loss function for high-noise samples and refine the
pseudo-labels based on the model’s predictions. Specifi-
cally, if the model is confident in its own prediction and
its prediction is close to the pseudo label, we consider
the pseudo label to have low noise. Therefore, we define
the cleanliness of a pseudo-label as ¢ = oS, + (1 —
a)loUp, where p is the model’s prediction, S, is the sen-
tence score of the prediction defined in Eq.(5), IoU), is the
intersection-over-union (IoU) between the prediction p and
the pseudo-label, and « is a hyperparameter. We require
that samples with a high level of cleanliness will have a
higher training weight. Therefore, we use ¢ to re-weight the
loss of each sample. The final phrase-level training loss is:

[fphrase = Z Ci ('Ciou + £cont + £con + ACe)c) (12)
icB

where B is a set of training samples in a batch, L;oy, Leonss

Lecon,and L, are the same training loss as the sentence-level

training in Eq.(8).

By the sample reweighting, we can avoid the negative
impact of noisy samples on the model as much as possible.
However, this alone is still insufficient because merely using
sample reweighting, the model still cannot learn more correct
samples. Thus, we further introduce the sample refinement
to dynamically refine the pseudo-labels during the training
process to improve their quality. Specifically, we can choose
a new pseudo-label proposal with the highest cleanliness
score ¢ as the new pseudo-label for the next epoch train-
ing. We select the k-th proposal as the refined pseudo-label,
where k = arg maxg (aSk + (1 — a)IoUy). The model can
refine the noisy label to the correct one if it has enough
confidence in predicting the right label. The refined phrase-
level pseudo-labels will be used in the training of the next
epoch.

4.4 State Queries

As existing large-scale visual language models are trained
with image-text pairs or trimmed video-text pairs, they have
a poorer understanding of actions in an untrimmed video
compared to their understanding of static states. Actions
in videos often coincide with changes in scene states, and
understanding these static scene states before and after such
actions can help the model understand the action. Therefore,
we propose to leverage large-scale language models to pre-
dict the states of scenes before and after the occurrence of
action phrases and use these state descriptions as additional
training data to improve the model’s understanding of action
phrases.

Specifically, we use the pre-trained SRLBERT(Shi & Lin,
2019) to extract phrases in the sentence as we described in
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Sec. 3.2.2. As we focus on improving the model’s under-
standing of actions, we only keep the verb phrases according
to the semantic role label predicted by SRLBERT. Then,
for each verb phrase, we require LLM to describe the sta-
tus changes of objects before and after the verb. As a verb
may correspond to multiple possible states before and after its
occurrence, we require LLM to describe all possible states of
the object as comprehensively as possible. The state descrip-
tion before the verb occurs should match the visual content
before the target segment in the video, and the state descrip-
tion after the verb occurs should match the visual content
after the target segment in the video. Therefore, for the tar-
get segment (st, en), we set the ground-truth for the state
description before the verb occurs as (st — t, st), and the
ground-truth for the state description after the verb occurs
as (en + t, en), where 7 is a hyperparameter. At this step,
we do not use VLM to generate pseudo-labels for status
descriptions because the ground truth of the sentence pro-
vides a more accurate prior. The verbs in the sentence occur
within the ground truth video segment so that the segment
before the ground truth should represent the state before the
action, while the segment after the ground truth should rep-
resent the state after the action. Finally, we use the state
descriptions and their corresponding ground-truth as addi-
tional samples to train the TRM model. In the TRM model,
since the state before/after the verb occurs may correspond
to multiple descriptions, we take the mean of the text features
of all descriptions as the text feature of that state. The text
features of sentences, phrases, and state descriptions will fur-
ther interact through a layer of transformer encoder. Through
this interaction, the model can obtain helpful information
from the state descriptions to aid in the localization of sen-
tences and phrases. For example, the localization results of
sentences and phrases should be situated within the video
segments corresponding to the state descriptions. The final
state loss is:

1
Lstate = z(ﬁbefore + ‘Cafter) (13)

where Lyerore and Lgyqer are the loss for the state descrip-
tion before and after the verb occurs calculated by Eq.(8).
Since the ground-truth for state descriptions is generated
based on the ground truth of sentences, this helps the model
more easily learn the relationship between sentence queries
and state queries. Therefore, we did not introduce noise esti-
mation in the pseudo labels for state descriptions to ensure
that the segments corresponding to the sentences are situ-
ated within the video segments corresponding to the state
descriptions.

4.5 Training and Inference
4.5.1 Training

The total loss of our model is as follows.

L = Lsent + ,Bﬁphrase + Vﬁstate (14)

where f and y are the hyper-parameters to balance three
losses.

4.5.2 Inference

At the inference time, when given a sentence query, we can
not only obtain the refined score maps S through Eq(5) to
make sentence-level predictions but also use the phrase score
map S? to make phrase-level predictions, which is demon-
strated in the qualitative results in Section 7. When given a
single phrase query, we can treat it as a sentence (as the text
encoders for phrase and sentence are shared). In this case,
the score maps of the sentence and phrase are the same and
both can be used to output phrase predictions.

5 Experiments
5.1 Dataset

Charades-STA Charades-STA (Gao et al., 2017) originates
from Charades (Sigurdsson et al., 2016) dataset, containing
indoor videos with sentence queries and corresponding anno-
tations. There are 12,408 and 3,720 video-query pairs for
training and testing respectively. Our sentence-level results
are reported on the test split.

ActivityNet Captions ActivityNet Captions (Krishna et
al., 2017) contains 20K videos, with 37,417/17,505/17,031
video-query pairs in the train /val_1/val_2 split. We adopt
standard splits and report the sentence-level results on the
val_2 split.

5.2 Experiment Settings

Evaluation Metric. Following (Gao et al., 2017), we adopt
the “R@1, IoU = m” and mloU (the mean average IoU)
metrics to evaluate the model’s performance. Specifically,
this metric evaluates the percentage of predicted moments
that have the temporal Intersection over Union (IoU) larger
than the threshold m, and m is set to {0.3, 0.5, 0.7}.

Evaluation for phrase. When evaluating the performance of
phrases, we use a single phrase rather than a complete sen-
tence as the query, in which case the score map of the sentence
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Table 1 Sentence-level and Phrase-level prediction accuracy on Charades-STA

Method feature  Sentence prediction Phrase prediction

IoU=0.3 IoU=0.5 IoU=0.7 mloU IoU=0.3 1IoU=0.5 IoU=0.7 mloU
SAP Chen and Jiang (2019)  AAAI'19 VGG — 27.42 13.36 —
MAN Zhang et al. (2019) CVPR 19 — 41.24 20.54 —
LGI Mun et al. (2020) CVPR 20 57.20 40.70 20.13 38.75
FVMR Gao and Xu (2021) ICCV 21 — 42.36 24.14 —
DRN Zeng et al. (2020) CVPR 20 — 42.90 23.68 —
SSCS Ding et al. (2021) ICCV 21 — 43.15 25.54 —
CBLN Liu et al. (2021) CVPR 21 — 43.67 24.44 —
CPN Zhao et al. (2021) CVPR 21 64.41 46.08 25.06 43.90
G2L Li et al. (2023) ICCV 23 — 47.91 28.42 —
2D-TAN Zhang et al. (2020) AAAI20 57.31 42.8 23.25 — 45.15 23.22 10.14 —
MMN Wang et al. (2022) AAAIL22 60.48 47.45 27.15 — 38.41 22.19 10.1 —
SPL Zheng et al. (2023) ACL 23 60.73 40.70 19.62 4047  39.14 21.46 8.17 27.69
PLPNet Li et al. (2022) ICMR 23 57.82 41.88 20.56 39.12  46.24 22.94 7.69 28.46
PTAN Wei et al. (2024) ICMR 24 61.16 45.13 24.68 41.69 4729 26.62 12.10 30.59
TRM (ours) AAAI23 VGG 60.67 47.77 28.01 42.77  57.03 33.69 11.86 35.82
TRM-PT (ours) 61.57 48.13 28.97 42.81 58.21 34.65 12.85 36.75
Table2 Sentence-level and phrase-level prediction accuracy on ActivityNet Captions
Method Feature Sentence prediction Phrase prediction

IoU=0.3 IoU=0.5 IoU=0.7 mloU IoU=0.3 IoU=0.5 IoU=0.7 mloU

DORIi Rodriguez-Opazo et al. (2021) WACV 21  C3D 57.89 41.49 26.41 42.78
BPNet Xiao et al. (2021) AAAI 21 58.98 42.07 24.69 42.11
VSLNet Zhang et al. (2020) ACL 20 63.16 43.22 26.16 43.19
DeNet Zhou et al. (2021) CVPR 21 61.93 43.79 — —
CPN Zhao et al. (2021) CVPR 21 62.81 45.10 28.10 45.70
DRN Zeng et al. (2020) CVPR 20 — 4545 24.36 —
SeqPAN Zhang et al. (2021) ACL 21 61.65 45.50 28.37 45.11
FIAN Qu et al. (2020) MM 20 64.10 47.90 29.81 —
CBLN Liu et al. (2021) CVPR 21 66.34 48.12 27.60 —
SMIN Wang et al. (2021) CVPR 21 — 48.46 30.34 —
MGSL-Net Liu et al. (2022b) AAAL22 — 51.87 31.42 —
BMRN Seol et al. (2023) CVPR 23 — 48.47 31.15 —
G2L Li et al. (2023) ICCV 23 — 51.68 33.35 —
MS-DETR Jing et al. (2023) ACL 23 62.12 48.69 31.15 46.82
SnAG Mu et al. (2024) CVPR 24 - 48.55 30.56 -
LGIMun et al. (2020) CVPR 20 58.48 41.65 24.1 41.48 3539 21.07 9.76 25.14
2D-TANZhang et al. (2020) AAAI20 59.45 44.51 27.38 — 51.71 42.19 3222 —
MIGCNZhang et al. (2021) TIP 21 60.03 44.94 27.85 43.59 4225 33.75 16.37 30.9
RaNetGao et al. (2021) EMNLP 21 60.96 45.59 28.67 44.82 4744 37.51 27.58 38.45
MMNWang et al. (2022) AAAL22 65.05 48.59 29.26 — 51.91 42.27 32.88 —
SPL Zheng et al. (2023) ACL 23 50.24 27.24 15.03 3544 3413 18.69 9.46 21.57
PLPNet Li et al. (2022) ICMR 23 56.92 39.20 20.91 39.53  50.10 38.12 25.24 37.96
PTAN Wei et al. (2024) ICMR 24 61.11 47.58 31.30 4541 5043 41.86 33.74 42.47
TRM (ours) AAAI 23 C3D 66.41 50.44 31.18 47.68 52.46 42.84 33.68 43.29
TRM-PT (ours) 66.92 51.54 31.85 47.76 53.79 44.01 34.21 44.23
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Table 3 Compositional generalization results on ActivityNet-CG dataset. ¥ denotes the results relying on external detector knowledge

Method

Test-Trivial

Novel-Composition Novel-Word

ToU=0.5 IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU

Weakly-supervised WSLL Duan et al. (2018) NeurIPS 18 11.03
RL-based TSP-PRL Wu et al. (2020) AAAI20 34.27
Proposal-free LGI Mun et al. (2020) CVPR 20 43.56
VLSNet Zhang et al. (2020) ACL 20 39.27
VISAT Li et al. (2022) CVPR22 47.13
DeCo Yang et al. (2023) CVPR 23 4738
Proposal-based TMN Liu et al. (2018) ECCV 18 16.82
2D-TAN Zhang et al. (2020) AAAI20  44.50
SPL Zheng et al. (2023) ACL 23 28.41
PTAN Wei et al. (2024) ICMR 24  50.66
TRM (Ours) AAAI23 5522
TRM-PT (Ours) 55.04

4.14 15.07 2.89 0.76 7.65 3.09 1.13 7.10
18.80  37.05 14.74 1.43 12.61 18.05 3.15 14.34
2329  41.37 23.21 9.02 27.86 23.10  9.03 26.95
23.12 4251 20.21 9.18 29.07 21.68 9.94 29.58
29.64  44.02 31.51 16.73 35.85 30.14 1590  35.13
28.43 46.03 28.69 12.98 32.67 - - -

7.01 17.13 8.74 4.39 10.08 9.93 5.12 11.38
26.03 42,12 22.80  9.95 28.49 23.86 10.37 28.88
17.43 34.87 19.45 7.63 21.59 22.58 10.49 27.31
34.45 48.75 31.77 16.41 34.07 31.22 15.99 34.32
35.06  51.85 33.80 16.86  35.80 35.49 17.68  37.50
35.21 51.37 35.01 18.01 36.75 35.21 17.84  37.35

Table4 Compositional generalization results on Charades-CG dataset.
T denotes the results relying on external detector knowledge. The dark
row indicates the results using I3D features fine-tuned on the Charades

dataset. * indicates the results reproduced using the same features as
ours with officially released code

Method

Test-Trivial

Novel-Composition Novel-Word

ToU=0.5 ToU=0.7 mloU IoU=0.5 IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU

Weakly-supervised WSLL Duan et al. (2018) NeurIPS 18 15.33
RL-based TSP-PRL Wu et al. (2020) AAAI20 39.86
Proposal-free LGI Mun et al. (2020) CVPR 20 49.45
VLSNet Zhang et al. (2020) ACL 20 4591
VISAT Li et al. (2022) CVPR22 53.20
DeCo Yang et al. (2023) CVPR 23  58.75
Proposal-based TMN Liu et al. (2018) ECCV 18 18.75
2D-TAN Zhang et al. (2020) AAAI20  48.58
SPL Zheng et al. (2023) ACL 23 4421
PTAN Wei et al. (2024) ICMR 24  62.73
PTAN* Wei et al. (2024) ICMR 24  47.19
TRM (Ours) AAAI23 5538
TRM-PT (Ours) 56.32

5.46 18.31 3.61 1.21 826 2.79 0.73 7.92
21.07  38.41 1630  2.04 1352 14.83  2.61 14.03
23.80  45.01 29.42 12.73  30.09 26.48 1247  27.62
19.80  41.63 24.25 11.54  31.43 25.60 10.07  30.21
2652  47.11 4541 2271  42.03 4235 20.88  40.18
28.71  49.06 47.39  21.06  40.70 - - -

8.16 19.82 8.68 4.07 10.14 9.43 4.96 11.23
2649 4427 3091 1223 29.75 29.36 13.21 28.47
22778  39.63 2341 8.54 18.63 24.14 11.63  25.98
39.24 5348 47.53  26.09 42.09 53.81 34.68 4771
26.87  43.08 33.41 16.12  32.82 40.29 2245 3791
3408  48.48 4098  20.81 37.13 44.60 2633  41.04
3484 4924 41.14 2243  39.02 4443 2647 41.14

and phrase is the same and both can be used to output predic-
tions. Due to the lack of phrase-level annotations, we adopt
the action annotation used for the Temporal Action Local-
ization task and use the action names as the query phrases.
Although we only tested with verbs, our model can handle
arbitrary phrases. To prove this, we also use the object anno-
tations on the Charades-STA dataset provided by Yuan et
al. (2017). We collect the common noun phrases in the sen-
tences, and get the time of the first appearance and the last
disappearance of the object in the object annotation as the
noised noun phrase ground truth timestamps. We report the
evaluation results of our model when using noun phrases as
queries in the ablation section. It is worth noting that we only

use the phrase-level annotations for evaluating the model’s
performance on phrases, and avoid using them in the train-
ing process. So our experiment setting is fair compared with
others.

Implementation Details. For the 2D temporal feature
map encoder, we use exactly the same settings with 2D-
TAN (Zhang et al., 2020) and MMN (Wang et al., 2022) for
fair comparisons. We use the VGG (Simonyan & Zisserman,
2015) features for the Charades-STA dataset and C3D fea-
tures (Tran et al., 2015) for the ActivityNet Captions dataset,
and the number of sampled clips N is 16 for Charades-STA
and 64 for ActivityNet Captions. For the text encoder, we
use the HuggingFace (Wolf et al., 2019) implementation of
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Fig. 7 Scalability analysis on videos of increasing length. (a) Infer-
ence time per video. (b) Peak GPU memory usage. The dense proposal
method (blue) shows quadratic scaling, while the sparse proposal
method (orange) scales near-linearly

DistilBERT (Sanh et al., 2019) with pre-trained model fol-
lowing MMN (Wang et al., 2022). The hyper-parameter ©
is set to 4 for both datasets. The threshold 6 for dividing
proposals Area 1 and Area 2 in Fig. 3 is set to 0.1. We use
BLIP-2 (Li et al., 2022) to evaluate the similarity between
video frames and phrases to generate phrase pseudo labels.
We use AdamW (Loshchilov & Hutter, 2019) optimizer with
learning rate 1 x 10~* and batch size 12 for Charades, learn-
ing rate 1 x 10~* and batch size 20 for ActivityNet Captions.
The learning rate of DistilBERT is 1/10 of our main model.

5.3 Comparison with Other Methods

This part compares state-of-the-art models and TRM’s ability
to deal with sentence-level and phrase-level prediction. On
both Charades-STA and ActivityNet Captions datasets, we
use sentences and verb phrases (obtained from action labels
used for the temporal action localization task) as queries
respectively. We assess the phrase-level localization perfor-
mance of various recent approaches, provided their code
is publicly accessible. For a fair comparison, all methods
use C3D (Tran et al., 2015) features on ActivityNet Cap-
tions and VGG (Simonyan & Zisserman, 2015) features on
Charades-STA !. “TRM’ represents our TRM model with
only sentence-level training and ‘TRM-PT’ represents our
TRM model with both sentence-level and phrase-level train-
ing.

As shown in Table 1 and Table 2, TRM achieves com-
parable results when using completed sentences as queries
and achieves an absolute advantage when using verb phrases
as queries. All the existing methods we reproduced have a
sheer drop when using phrases as queries. For example, on

! For a fair comparison, some methods utilizing object-level fea-
tures (Rodriguez-Opazo et al., 2021; Liu et al., 2022a) or large-scale
pre-trained models (Luo et al., 2023; Wang et al., 2023) have not been
included in the Table 2 and Table 1.
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the Charades-STA dataset, the phrase-level prediction per-
formance of MMN on the metric ‘loU=0.3" is dropped by
22.07% compared with the sentence-level performance. This
reveals that existing models lack sufficient understanding of
the intrinsic relationship between simple visual and language
concepts. When introducing phrase information, the gap is
narrowed to 3.64%, which demonstrates the effectiveness of
our method. We also compare our method with SPL (Zheng et
al., 2023), which generates pseudo-labels for zero-shot local-
ization. As we can see, our TRM-PT framework significantly
outperforms SPL across both datasets. This underscores the
effectiveness of our approach, which is specifically designed
tohandle phrase-level learning and address the weaknesses of
VLMs in understanding verbs by inferring the state changes
before and after the verb.

We can also find that when using phrase-level training
to provide more supervision signals, the phrase-level per-
formance can be further improved. This demonstrates the
effectiveness of our phrase-level training, which generates
phrase-level pseudo-labels and estimates the noise in the
pseudo-labels to refine them. Although our method shows
less significant improvement in sentence-level prediction
performance, the experiments in Fig 8(a) demonstrate that
our method performs better when the amount of training data
is limited.

5.4 Compositional Generalization

VISA (Li et al., 2022) constructed the ActivityNet-CG and
Charades-CG datasets by resplitting the ActivityNet and
Charades-STA datasets to validate the model’s composi-
tional generalization. Both of them consist of the training
split, the test-trivial split, the novel-composition split, and
the novel-word split, where the test-trivial split has the same
distribution as the training split, the novel-composition split
includes unseen compositions of seen phrases, and the novel-
word split includes unseen words. We use ActivityNet-CG
and Charades-CG datasets to evaluate the generalization per-
formance of our model in Table 3 and Table 4.

The Novel-Composition split includes novel composi-
tions of seen phrases, which evaluate the model’s ability
to understand phrases and to generalize to novel compo-
sitions of phrases. This is most relevant to our research
question, and our TRM-PT model shows a clear and sig-
nificant improvement over the original TRM. 1) As shown in
Table 3, on the ActivityNet-CG dataset, our method achieves
the best performance across all splits. Notably, on the Novel-
Composition split, our TRM-PT model outperforms the next
best method, VISA (Li et al., 2022), by 3.5% on the met-
ric ‘IoU = 0.5’. This is significant because our model was
not specifically designed for compositional generalization,
yet by learning fine-grained phrase-level concepts and their
relationship to the sentence, it exhibits superior generaliza-
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Table 5 Ablation studies on the influence of phrase and score map and the implementation of our hypotheses in our TRM model

Method Sentence prediction Verb phrase prediction Noun phrase prediction

Phrase  Consistency  Exclusiveness IoU=0.3 [oU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7
X X X 60.48  47.45 27.15 38.41 22.19 10.01 33.13 8.17 3.15

v X X 59.84 46.65 26.99 41.13 22.63 10.60 35.41 7.36 2.68

v 4 X 60.22 46.56 27.31 56.69 30.85 10.85 71.12 51.67 8.57

4 X v 60.13 45.89 27.80 38.90 22.11 10.46 36.88 8.63 3.01

v v 4 60.67 4777 2801  57.03  33.69 11.86 7825 5710 1017

Table 6 Comparison of our TRM model and baseline with dense vs. sparse proposals on the Charades-STA dataset. We test the inference time and

GPU memory for each video

Proposals ~ Method Sentence Prediction Phrase Prediction Time (ms)  GPU Memory (GB)
R@0.3 R@(0.5 R@(0.7 R@03 R@05 R@0.7 Proposals  Others
Dense MMN Wang et al. (2022)  60.48 47.45 27.15 38.41 22.19 10.1 31.17 0.0005 1.04
TRM (Ours) 60.67 47.77 28.01 57.03 33.69 11.86 31.25 0.0005 1.04
Sparse MMN Wang et al. (2022)  57.14 45.21 24.13 36.14 18.93 7.23 30.41 0.0001 1.04
TRM (Ours) 58.03 45.96 25.87 56.14 31.17 10.21 30.75 0.0001 1.04
Table 7 Ablation studies on the effectiveness of focal loss in our TRM model
Method sentence prediction verb phrase prediction noun phrase prediction
ToU=0.3 IoU=0.5 1oU=0.7 IoU=0.3 1oU=0.5 ToU=0.7 1oU=0.3 TIoU=0.5 IoU=0.7
w/o focal loss 60.81 45.54 25.54 56.28 29.79 11.13 71.59 52.88 11.67
w/ focal loss 60.67 47.77 28.01 57.03 33.69 11.86 78.25 57.10 10.17

tion when encountering new combinations of old phrases.
2) Moreover, the performance gain of TRM-PT over TRM
on the Novel-Composition split is particularly noteworthy.
This demonstrates that improving the model’s foundational
understanding of individual phrases, a direct result of our
phrase-level pseudo-labeling and state-change modeling, is
crucial for enhancing its ability to generalize to new com-
binations of those phrases. 3) On the Charades-CG dataset
(Table 4), DeCo and PTAN report results using I3D features
fine-tuned on the Charades dataset using verb annotations,
which provides an unfair comparison with our methods and
those of others in the table, as other methods can not access
these verb annotations. For a fair and direct comparison, we
reproduce the results of PTAN using the official code with
the same visual features (methods marked by *). As indicated
in the table, our TRM and TRM-PT models achieve better
performance than DeCo and PTAN in the novel-composition
split. These empirical results prove that learning phrase-level
predictions and the temporal relationships between phrases
and sentences help the model generalize to both novel words
and novel compositions of seen concepts.

The Test-Trivial and Novel-Word splits evaluate different
capabilities. The Test-Trivial split shares the same distribu-

tion as the training set, while the Novel-Word split contains
words not seen during training, thus testing open-vocabulary
understanding. 1) As we can see, our TRM and TRM-PT
achieve the best performance on most of the metrics in the
test-trivial and novel-word splits, demonstrating the effec-
tiveness of our methods. 2) When comparing our TRM-PT
with our TRM, the TRM-PT demonstrates less improvement
on the two splits. This is because the Test-Trivial and Novel-
Word splits evaluate different capabilities, which are not the
primary targets of our TRM-PT extension. We test the vari-
ance of the TRM-PT performance, where the variances for
ToU=0.5,10U=0.7, and mloU are 0.37,0.41, and 0.52, respec-
tively on the Test-Trivial splits. As shown in Table 3, the
performance fluctuations of TRM-PT compared to TRM are
within the range of variance. Therefore, we consider this rea-
sonable.

6 Ablation Studies

We conduct ablative experiments on the Charades-STA
dataset to analyze the effectiveness of our model design.
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Table 8 Ablation studies on the phrase extraction of our TRM model on ActivityNet Captions dataset

Method Sentence prediction Phrase prediction
IoU=0.3 IoU=0.5 ToU=0.7 mloU IoU=0.3 IoU=0.5 IoU=0.7 mloU
SRL 66.59 50.03 31.52 47.99 52.33 4491 33.12 43.29
Sub-sentence 66.37 50.57 31.02 48.01 52.26 42.96 32.87 42.58
Table 9 Ablation studies on different methods to aggregate phrase score map on our TRM model
Method sentence prediction verb phrase prediction noun phrase prediction
1oU=0.3 1oU=0.5 1oU=0.7 1oU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7
Average 60.27 47.19 26.95 56.27 33.84 12.06 77.23 57.48 9.71
Weighted sum 60.67 47.77 28.01 57.03 33.69 11.86 78.25 57.10 10.17
Table 10 Ablation studies on different features of our TRM-PT model on Charades-STA dataset
Method Sentence prediction Phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mloU TIoU=0.3 IoU=0.5 IoU=0.7 mloU
VGG 60.67 47.77 28.01 42.77 57.03 33.69 11.86 35.82
CLIP 62.39 48.49 28.66 43.67 59.01 34.89 12.75 37.84
13D 67.31 55.73 33.33 46.42 60.97 36.72 16.67 39.57
Table 11 Ablation studies on different features of our TRM-PT model on ActivityNet Captions dataset
Method Sentence prediction Phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mloU IoU=0.3 IoU=0.5 IoU=0.7 mloU
CLIP 61.63 45.18 26.53 44.24 50.87 41.97 33.29 42.27
C3D 66.41 50.44 31.18 47.68 52.46 42.84 33.68 43.29
Table 12 Ablation study on the threshold 6 for Area Segmentation on the Charades-STA dataset
Threshold 6 Sentence prediction Phrase prediction
ToU=0.3 IoU=0.5 ToU=0.7 mloU ToU=0.3 IoU=0.5 ToU=0.7 mloU
0.0 60.54 47.61 27.86 42.65 57.01 33.14 11.64 35.46
0.1 60.67 47.77 28.01 42.77 57.03 33.69 11.86 35.82
0.3 60.11 47.54 27.98 42.47 56.87 32.87 11.54 35.12
0.5 60.17 47.13 27.51 42.09 55.74 31.47 10.89 34.73
Table 13 Ablation studies on the phrase-level training and noise estimator of our TRM-PT model on the Charades-STA dataset
Phrase Loss Noise Estimator State Loss Sentence prediction Phrase prediction
IoU=0.3  IoU=0.5 IoU=0.7 mloU IoU=0.3 IoU=0.5 IoU=0.7 mloU
X X X 60.67 47.77 28.01 4277  57.03 33.69 11.86 35.82
v X X 60.28 46.93 27.72 42.58 57.38 33.24 11.38 35.57
v v X 60.07 4743 27.84 42.69 57.93 34.12 12.69 36.21
4 4 4 61.57 48.13 28.97 4281 5821 34.65 12.85 36.75

@ Springer



International Journal of Computer Vision (2026) 134:53

Page170f25 53

Table 14 Design choices of state queries of our TRM-PT model on the Charades-STA dataset

Method sentence prediction phrase prediction
IoU=0.3 IoU=0.5 IoU=0.7 mloU IoU=0.3 IoU=0.5 IoU=0.7 mloU
State description from sentence 59.76 47.61 28.23 41.89 57.13 33.24 12.01 35.17
verb 61.57 48.13 28.97 42.81 58.21 34.65 12.85 36.75
State ground-truth from  phrase pseudo-label 59.74 46.98 27.43 41.13 56.37 32.12 11.76 35.09
VLM 60.83 47.11 27.94 41.74 57.71 33.11 12.01 35.14
sentence annotation 61.57 48.13 28.97 42.81 58.21 34.65 12.85 36.75
Inference w/ state description 61.37 48.24 28.69 42.73 58.33 34.41 12.87 36.58
w/o state description  61.57 48.13 28.97 42.81 58.21 34.65 12.85 36.75

Table 15 Performance comparison on rare and common phrases on the Charades-STA dataset. “Rare” refers to phrases with low frequency in the

training set

Method Rare phrase prediction Common phrase prediction

IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7
2D-TAN Zhang et al. (2020) AAAI20 41.53 20.84 8.64 45.39 23.87 10.71
MMN Wang et al. (2022) AAAIL22 35.89 20.14 8.87 39.01 22.54 10.31
PTAN Wei et al. (2024) ICMR 24 45.11 24.67 10.47 4751 26.89 12.53
TRM (ours) AAAI23 55.56 31.37 9.46 57.98 33.90 12.07
TRM-PT (ours) 57.21 33.87 11.59 58.34 34.73 12.96

Table 16 Performance comparison on rare and common phrases on the ActivityNet Captions dataset. “Rare” refers to phrases with low frequency

in the training set

Method Rare phrase prediction Common phrase prediction

IoU=0.3 IoU=0.5 IoU=0.7 1oU=0.3 IoU=0.5 1oU=0.7
2D-TAN Zhang et al. (2020) AAAI20 49.21 39.87 30.54 51.98 42.67 32.78
MMN Wang et al. (2022) AAAL22 49.47 40.87 31.04 52.11 42.39 33.12
PTAN Wei et al. (2024) ICMR 24 47.83 38.96 31.14 50.79 42.07 34.14
TRM (ours) AAAI23 49.97 40.89 31.04 52.83 4291 33.74
TRM-PT (ours) 5241 42.84 33.09 53.84 44.43 34.37

6.1 Ablations on Sentence-Level Training

In this section, we evaluate the effectiveness of our design
in the sentence-level training. All these experiments do not
involve the phrase-level training (TRM-PT), but are designed
to validate the necessity of our proposed modules within the
sentence-level training scheme.

Effectiveness of temporal relationship mining. As shown
in Table 5, comparing the first and second rows, we find that
simply introducing fine-grained phrase features without con-
sidering the relationship between phrase and sentence-level
predictions has limited performance improvement for phrase
prediction. From the third row, we see that consistency loss
can greatly improve the performance of phrase prediction.
From the fourth row, it can be seen that training with only
exclusiveness loss has a negative impact on the model. This

is because only the exclusivity loss is incomplete because
the all-zero scores map of phrases is a set of trivial solutions.
From the fifth row, we can see that the consistency loss and
exclusiveness loss together can further improve the perfor-
mance of both sentences and phrases. The results show that
exploiting the consistency and exclusiveness constraints of
phrase-level predictions and sentence-level predictions can
regularize the training process, thus alleviating the ambigu-
ity of each phrase localization.

Ablation on Proposal Density and Scalability. Our frame-
work is agnostic to the specific method for generating
proposals. To investigate the trade-offs, we evaluate two
strategies: a dense approach using sliding windows and a
sparse approach employing a hierarchical segment tree. We
assess their impact on model performance, inference speed,
and GPU memory usage. (1) As shown in Table 6, on the
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Table 17 Performance on the Charades-STA dataset with label noise
Method sentence prediction phrase prediction
ToU=0.3 IoU=0.5 IoU=0.7 mloU IoU=0.3 IoU=0.5 IoU=0.7 mloU
MMN Wang et al. (2022) 54.23 43.01 23.10 37.43 36.15 19.12 9.12 28.96
TRM (ours) 54.69 43.93 23.93 38.02 44.57 22.11 10.71 31.24
TRM-PT (ours) 55.39 44.70 24.70 38.74 45.01 22.47 10.91 31.54
Fig.8 Performance on the 29 14
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(a) Sentence-level prediction

Charades-STA dataset, the dense proposal method signifi-
cantly outperforms the sparse one. Given the small number
of video clips in this dataset, the computational overhead of
the dense method is manageable, making its superior per-
formance the deciding factor. Consequently, we adopt dense
proposals for our main experiments. (2) Our experiments in
Fig. 7 show that as the number of input clips increases, the
resource consumption of the sparse proposal method scales
near-linearly, while the dense method scales quadratically.
To illustrate the real-world implications for long videos, con-
sider a benchmark like the MAD (Soldan et al., 2022) dataset,
where videos average 110 minutes. Sampling one clip per
second would yield N = 6600. Projecting from our analysis
in Fig. 7, the GPU memory usage with a sparse approach
would be less than 12GB, which is feasible on modern hard-
ware. This confirms our method’s applicability to hour-long
videos. (3) The number of phrases () introduces a neg-
ligible computational overhead. In practice, the number of
phrases extracted per sentence is very small. Specifically, we
split phrases based on subject-verb-object structure. Cha-
rades mostly consist of simple sentences, resulting in an
average of three phrases (subject, verb and object). Activi-
tyNet may contain sentences with multiple verbs and objects,
leading to an average of 5 phrases. As shown in Table 6, when
comparing our full TRM model against the MMN baseline
(which does not use phrases), the increase in overhead is
negligible on the Charades-STA dataset. This demonstrates
that the processing of phrases has a very small impact on the
overall resource requirements.

Effectiveness of focal loss. We have used the focal loss (Lin
et al., 2017) in our consistency loss L, and exclusiveness
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Fig. 9 Ablation study on the robustness of our TRM-PT model to
the phrase-level label noise on the Charades-STA dataset. We replace
pseudo-labels with ground-truth phrase annotations and introduce con-
trolled noise

loss L, to balance the positive and negative samples during
training. Table 7 shows the effectiveness of the focal loss.
In the first row, we use the BCE loss in the consistency and
exclusiveness loss instead of focal loss. As we can see, focal
loss improves the performance of both sentence prediction
and phrase prediction.

We also find that focal loss can significantly improve the
performance of noun phrases. This may be because the dis-
tribution of nouns in the training set is more imbalanced
compared to the distribution of verbs, and in such cases, focal
loss can yield greater benefits.

Ablation of phrase extraction. The query sentence on
ActivityNet Captions is more complex and usually contains
multiple verbs. So we also tried to divide a long sentence
into multiple sub-sentences based on verbs as phrases for
our training (Table 18 provides some examples). As shown
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Fig. 10 Qualitative results of
our TRM-PT model on
Charades-STA

Sentence ground truth:

Query: A person walks in a doorway drinking some coffee.
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Sentence:
0.0s 9.6s
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(b) Sentence and phrase 2D score map
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Sentence ground truth (the person eats some piece of food):

5.0s 15.8s
Initial phrase pseudo-label (eats):
4.7s 17.4s
Refined phrase pseudo-label (eats):
5.4s 16.3s

in Table 8, ‘SRL’ means we extract semantic role labels of
verbs and proto-patients as our phrases, which is the same
as what we do on the Charades-STA dataset. ‘Sub-sentence’
means we extract sub-sentence as phrases. The two phrase
extraction methods have similar performance on sentence-
level prediction. Still, the more fine-grained extraction of
phrases according to the semantic rule label performs better
on phrase-level prediction. Thus, we use ‘SRL’ in all exper-
iments.

Ablation of phrase weight. To verify the effectiveness of
phrase weights, we use average pooling to aggregate the
phrase score map and the results are shown in Table 9. As we
can see, predicting the weight of each phrase as its importance
and aggregating the phrase score map achieves better per-
formance. This demonstrates assigning different weights to
different phrases can improve the performance of sentence-
level prediction slightly. This is because different phrases

(c) Phrase-level pseudo-labels

have varying levels of importance within a sentence, so the
score maps of different phrases should also influence the
sentence-level score map to different extents.

Ablation of different features. As shown in Table 10 and
Table 11, we use the VGG (Simonyan & Zisserman, 2015),
C3D (Tran et al., 2015), I3D (Carreira & Zisserman, 2017),
CLIP (Radford et al., 2021) to extract the visual features. As
we can see, for both datasets, we find that visual features
have a greater impact on performance. We find that the I3D
and C3D feature, which is more sensitive to action, achieves
superior performance, which indicates that the action infor-
mation is important. On the Charades-STA dataset, the CLIP
features perform better than VGG features, but not as well
as 13D features. This suggests that the CLIP model, which is
trained with large-scale image-text pairs, has better general-
ization performance than VGG. But in video tasks, it is not
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Table 18 Some examples of our extracted phrases during training

Dataset Sentence

Phrases

Charades-STA Person drinking a glass of water.

A person is putting a book on a shelf.

Person picks up a plate holding a sandwich.

"o

“drinking", “a glass of water"
“putting", “a book"

"o

“pick", “a sandwich", “holding", “a plate"

ActivityNet She pours various liquids into a mixer and shakes the “pours", “various liquids", “shakes", “the mixture
mixture all together. all"
We see the holographic man on the wall with the “see", “the footprints on the platform"

paper.

Both women stand talking to the camera while

presenting the braid just made.

ActivityNet (sub-sentence)
mixture all together.

We see the holographic man on the wall with the

paper.

Both women stand talking to the camera while

presenting the braid just made.

She pours various liquids into a mixer and shakes the

"o

“stand", “talking", “presenting", “the braid just
made", “made", “the braid"

“She pours various liquids into a mixer", “She
shakes the mixture all together"

“We see the holographic man on the wall with the
paper"

“Both women stand", “Both women talking to the
camera", “Both women presenting the braid just

"o

made", “the braid just made"

as good as the I3D features that have been pre-trained with
video action detection tasks.

Ablations of hyper-parameters. We conduct an ablation
study to analyze the impact of the threshold 6, which is crucial
for dividing proposals into Area I and Area II for our consis-
tency and exclusiveness losses. As shown in Table 12, setting
0=0.1 achieves the best overall performance across both sen-
tence and phrase-level predictions. A smaller threshold (e.g.,
0.0) is too lenient and may incorrectly classify negative pro-
posals as positive, while a larger threshold (e.g., 0.5) is too
strict and may discard proposals that have a meaningful over-
lap with the ground truth. Therefore, we set 6=0.1 for all
experiments.

6.2 Ablations on Phrase-Level Training

In this section, we evaluate the effectiveness of our design in
the phrase-level training. All the experiments are conducted
on our TRM model with both sentence-level and phrase-level
training.

Effectiveness of phrase-level training. Table 13 shows the
effectiveness of the three designs in our phrase-level training:
the phrase loss, the noise estimator, and the state loss. As
we can see, when only introducing the phrase-level training
while not considering the noise in the pseudo-labels, both
the sentence-level and phrase-level performance are dropped.
This is because the label noise in the pseudo-labels negatively
impacts the model performance. When the noise estimator is
introduced, the performance of both sentence prediction and
phrase prediction is improved. When further introducing the
state loss, both the performance of sentence-level prediction

@ Springer

and phrase-level prediction are improved, demonstrating the
effectiveness of our proposed phrase-level training.

Design choices of state queries. We conduct ablation experi-
ments on the design of state queries. (1) As shown in Table 14,
we first use the LLM to infer the state descriptions before
and after the entire query sentence, instead of individual
verbs. We find that the model’s performance declines, which
may be due to the complexity of the full sentences, lead-
ing to decreased reliability in the LLM’s predictions of the
state descriptions before and after the sentence. (2) We also
use pseudo-labels corresponding to verb phrases to deter-
mine the ground truth for the state query. We find that the
model’s performance declined compared to using sentence
annotations to determine the state query’s ground truth. This
is because errors may still exist in the pseudo-labels cor-
responding to verb phrases, even with our noise estimator.
Since verb phrases are contained within sentence queries,
determining the state query’s ground truth based on sen-
tence annotations is a better choice. (3) We also use VLM
to infer pseudo-labels for state descriptions, rather than rely-
ing on sentence annotations. We find that the performance
decreased, which is likely due to the potential errors in the
pseudo-labels inferred by VLMs. Since actions must occur
within the video segments corresponding to the sentence, the
video segment before the sentence ground-truth must corre-
spond to the state descriptions before the actions, and vice
versa. Therefore, the sentence ground truth can provide more
accurate state query labels. (4) During inference, we experi-
ment with whether to use the state description as an additional
input, provided to the model along with the query sentence.
The experimental results show that the performance of both
approaches was similar. This may be because using the state
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description as training data provided a stronger supervisory
signal, constraining the semantics of the segments before
and after the target segment, which made the visual features
of the target segment more discriminative. Therefore, even
without providing the state description during inference, the
model’s performance still improved. However, using the state
description incurs additional costs for LLM API calls, so we
prefer not to use the state description during inference.

sComparison on rare phrases. To provide a deeper analysis
of the performance gain from our TRM-PT, we conducted a
new, more fine-grained analysis by splitting the phrases in
the test sets of Charades-STA and ActivityNet Captions into
‘rare’ and ‘common’ categories based on their frequency of
appearance in the training set sentence queries. As shown
in Table 15 and 16, on the rare phrases, TRM-PT pro-
vides a substantial performance boost over the TRM while
on common phrases, the performance improvement is less
pronounced. This is because the TRM primarily relies on
sentence-level annotations to provide implicit supervision for
the constituent phrases. Consequently, its ability to learn rep-
resentations for a given phrase is heavily influenced by the
number of sentence annotations containing that phrase. For
rare phrases, this supervision is sparse. Our proposed phrase-
level training (TRM-PT) directly addresses this limitation by
using external VLMs to generate phrase-level pseudo-labels,
effectively supplementing the training data and compensat-
ing for the shortcomings of TRM on these rare concepts.
Since common phrases constitute the majority of the test data,
the significant gains on rare phrases are diluted in the overall
average, leading to the modest improvements observed in the
main tables (Table 1) and Table 2.

Comparison when using limited training data. By intro-
ducing additional phrase-level pseudo-labels through phrase-
level training, we find that the model performance with
limited training data is improved. As shown in Fig. 8, we
train the model using a subset of training data from the
Charades-STA dataset and measure the model’s sentence-
level and phrase-level performance under different training
data quantities in Fig. 8(a) and Fig. 8(b) respectively. It can
be observed that our method outperforms the baseline across
various data quantities. On the other hand, as the data quan-
tity gradually decreases, the advantages of TRM-PT become
increasingly evident. This suggests that the introduction of
phrase-level pseudo-labels to some extent augments the train-
ing data, enabling better adaptation to scenarios with limited
data.

Comparison when using noised annotation. We also find
that introducing phrase-level training to some extent helps
improve the model’s robustness under noisy sentence anno-
tation conditions. As shown in Table 17, we artificially
introduced random offsets to the start and end times of anno-
tated video segments in the Charades-STA dataset to create

scenarios with noisy labels and evaluate the model’s per-
formance. It can be observed that under this setup, both
our sentence-level and phrase-level localization outperform
the baseline. We also observed that the performance of the
phrase-level training method with pseudo-labels is better.
This is because the generation of phrase-level pseudo-labels
is less affected by noise in sentence-level annotations and
caninfluence sentence-level localization through consistency
and exclusive constraints, making it more robust.

Analysis on Pseudo-Labels Noise. (1) To analyze the noise
on the pseudo-labels, we ask annotators to check the quality
of pseudo-labels. We randomly selected 50 videos with 120
queries from the Charades-STA dataset and found that 51.6%
of the pseudo-labels were accurate. As shown in Table 1, even
with the presence of noise in these pseudo-labels, the TRM-
PT model trained with them surpasses previous methods and
achieves state-of-the-art performance on phrase-level pre-
diction. This demonstrates the effectiveness of our TRM-PT
framework in training models using phrase pseudo-labels.
(2) To systematically evaluate the impact of pseudo-label
noise on model performance, we have conducted a new con-
trolled experiment on the Charades-STA dataset. Instead of
using pseudo-labels generated by a VLM, we utilized the
ground-truth temporal annotations for verb and noun phrases
(from action localization and object detection tasks) as an
"oracle". We then synthetically introduced noise into these
ground-truth phrase labels to simulate scenarios with varying
levels of pseudo-label corruption. Specifically, we randomly
selected a certain percentage of the phrase annotations and
perturbed their start and end times. The offset for each
boundary was randomly sampled from a uniform distribution
U(—0.1x D, 0.1 x D), where D is the duration of the video.
We trained our TRM-PT model on these noisy labels and
evaluated its performance on both sentence and phrase local-
ization. The results are shown in Fig. 9. As illustrated, the
performance of our model gracefully degrades as the noise
ratio in the phrase labels increases. Notably, even with 60% of
the phrase labels being noisy, our TRM-PT maintains better
performance than TRM and MMN, showcasing its resilience.
This experiment validates the effectiveness of our proposed
Noise Estimator, which successfully mitigates the negative
impact of noisy samples during training. The results confirm
that our framework is robust to the inherent noise present
in automatically generated pseudo-labels, which is a critical
aspect for real-world applications.

7 Qualitative Results
In Fig. 10, we provide a visualization of the predictions and

score maps of our model and the baseline (without phrase)
on Charades-STA Dataset. In Table 18, we provide some

@ Springer
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examples of our extracted phrases during training. As we
can see, our prediction for the sentence matches the ground
truth (in green) well. Also, our TRM understands that the
entire sentence consists of three phrases: the phrase ‘drink-
ing’, ‘some coffee’, and ‘walks’. We also shows the 2D score
map of all the sentence and phrases. All the predictions and
scoremaps satisfy our constraints of consistency and exclu-
siveness. In contrast, while the baseline model also performs
well in the sentence-level prediction, the predictions for the
phrases ‘drinking’ and ‘walks’ are less accurate and violate
the constraint of consistency, i.e., there is no overlap with
the ground truth of the sentence. We also note that the score
map predicted by the baseline model has multiple peaks on
phrases, which indicates that the baseline model is not con-
fident in the prediction of phrase. Fig. 10(c) also provides
visualizations of some phrase-level pseudo-labels. It can be
observed that the initial pseudo-labels generated using pre-
trained large-scale models offer approximate locations of the
video segments corresponding to phrase queries, but they
are still not accurate enough. In contrast, the pseudo-labels
obtained after noise estimation and refinement exhibit higher
accuracy.

8 Conclusion

In this work, we propose the phrase-level Temporal Rela-
tionship Mining (TRM) framework considering both phrase
and sentence queries, making the first attempt to mine the
phrase-proposal relation in the temporal localization task.
We develop a method to constrain phrase-level prediction
in training, tackling the lack of phrase-level annotation. We
propose the consistency and exclusiveness constraints of
phrase-level and sentence-level predictions to regularize the
training process, thus alleviating the ambiguity of each phrase
prediction. We also propose to use the pre-trained model to
generate fine-grained pseudo-labels for phrases and use the
noise estimator to mitigate the negative impact of the label
noise. Finally, to enhance the understanding of verb phrases
in the model, we utilize a large-scale language model to infer
changes in the scene’s state before and after the occurrence of
verb phrases and align them with the visual content. Exper-
imental results on Charades-STA and ActivityNet Captions
indicate that our model surpasses other models in phrase-
level prediction while sentence-level results remain stable,
demonstrating our model’s competence, interpretability, and
generalization performance.
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